Department of Mathematics and Statistics
 Question Bank of entry test for Admission to MPhil Statistics degree program

115) What is the percentage of values lie above 60	B
A. 68% B. 16%	
C. 97.5% D. 32%	
116) What is the percentage of values lie below 40	B
A. 68% B. 16%	
C. 97.5% D. 32%	
117) What is the percentage of values lie between 30 and 60	A
$\begin{array}{ll}\text { A. } 81.5 \% & \text { B. } 16 \%\end{array}$	
C. 97.5% D. 32%	
118) What is the percentage of values lie below 20 or above 80	C
A. 27% B. 99.73%	
C. 0.27% D. 95%	
119) What percent of the values below 50	A
$\begin{array}{ll}\text { A. } 50 \% & \text { B. } 75 \%\end{array}$	
C. 25% D. 90%	
120) What is the percentage of values lie below 20	D
$\begin{array}{ll}\text { A. } 27 \% & \text { B. } 0.05 \%\end{array}$	
C. 0.27% D. 0.135%	
121) Any value which is not consistent with rest of data value is called	A
A. Outlier B. Normal	
C. Abnormal D. Order Statistic	
122) If a data has only two values with variance 9 , what is the range of the data	B
A. 12 B. 6	
C. 21 D. Cannot be determine	
123) Which of the following measure is effected by outlier	A
A. Range ${ }^{\text {a }}$ B. Median	
C. Quartile Deviation D. Deciles	
124) How much percent the values above $7^{\text {th }}$ decile (D7)	A
A. 70% B. 90%	
C. 30% D. 10%	
125) There are --------values that divides the data into 10 equal parts	B
A. 10 B. 9	
C. 8 D. 2	
126) Measure of central tendency is also called	
A. Measure of spread \quad B. Average	
C. Measure of Location D. Both (b) and (c)	
127) If mean and median of a data re 10 and 30 respectively, find mode of the data	B
$\begin{array}{ll}\text { A. } 20 & \text { B. } 70\end{array}$	
C. 40 D. Cannot be determine	
128) If mean and median of a data re 10 and 30 respectively, discuss shape of the data	B
A. Positively shewed ${ }^{\text {B }}$ B. Negatively Shewed	
C. Symmetrical D. May be positive or Negative	
129) If lower and upper quartiles of a data bell shape symmetrical data are 10 and 40 respectively, find median of the data	B
$\begin{array}{ll}\text { A. } 20 & \text { B. } 25\end{array}$	
C. 30 D. 15	
130) If lower and upper quartiles of a data bell shape symmetrical data are 10 and 40 respectively, find mode of the data	B
$\begin{array}{ll}\text { A. } 20 & \text { B. } 25\end{array}$	
C. 30 D. 15	
131)Value of coefficient of skewness less than zero indicates that data is	B

211)In regression analysis, the variable that is being predicted is			B
	A. the independent variable	B. the dependent variable	
	C. usually denoted by x	D. usually denoted by r	
212) If the slope of the regression equation $y=b o+b 1 x$ is positive, then			B
	A. as x increases y decreases	B. as x increases so does y	
	C. Either a or b is correct	D. as x decreases y increases	
213)	A residual is defined as		B
	A. The difference between the actual Y values and the mean of Y.	B. The difference between the actual Y values and the predicted Y values.	
	C. The predicted value of Y for the average X value.	D. The square root of the slope	
214)	A linear regression (LR) analysis produces the equation	$\mathrm{Y}=0.4 \mathrm{X}+3$. This indicates that	D
	A. When $\mathrm{Y}=0.4, \mathrm{X}=3$	B. When $\mathrm{Y}=0, \mathrm{X}=3$	
	C. When $\mathrm{X}=3, \mathrm{Y}=0.4$	D. When $\mathrm{X}=0, \mathrm{Y}=3$	
215)	If the t ratio for testing the significance of slope of a sim values of the t distribution at the 1% and 5% levels, resp	mple linear regression equation is -2.58 and the critical pectively, are 3.499 and 2.365 , then the slope is	D
	A. not significantly different from zero	B. significantly different from zero at both the 1% and the 5% levels.	
	C. significantly different from zero at the 1% level but not at the 5\% level.	D. significantly different from zero at the 5% level but not at the 1% level.	
216)	Ordinary least squares is used to estimate a linear relatio $\$ 1,000$ s) and the average percentage discount from list p confidence interval on the slope is calculated from the r Based on this result, the researcher	onship between a firm's total revenue per week (in price allowed to customers by salespersons. A 95\% regression output. The interval ranges from 1.05 to 2.38 .	D
	A. can conclude that the slope is significantly different from zero at the 5% level of significance.	B. can be 95% confident that the effect of a 1% increase in the average price discount will increase weekly total revenue by between $\$ 1,050$ and \$2,380.	
	C. has one chance in twenty of incorrectly concluding that the slope is within the estimated confidence interval.	D. All of the above are correct.	
217)	Multiple regression analysis is used when		B
	A. there is not enough data to carry out simple linear regression analysis	B. the dependent variable depends on more than one independent variable.	
	C. one or more of the assumptions of simple linear regression are not correct.	D. the relationship between the dependent variable and the independent variables cannot be described by a linear function.	
218)	The adjusted value of the coefficient of determination		D
	A. will always increase if additional independent variables are added to the regression model	is equal to the proportion of the sum of the squared B. deviations of the dependent variable from its mean that is explained by the regression model	
	is always greater than the proportion of the sum of C. the squared deviations of the dependent variable from its mean that is explained by the regression model.	is always less than the proportion of the sum of the D. squared deviations of the dependent variable from its mean that is explained by the regression model.	
219) If the F test statistic for a regression is greater than the critical value from the F distribution, it implies that			C

$\left.\begin{array}{|l|l|l|l|l|}\hline & \begin{array}{l}\text { A. } \\ \text { none of the independent variables in the regression } \\ \text { model have a significant effect on the dependent } \\ \text { variable. }\end{array} & \begin{array}{l}\text { B. }\end{array} & \begin{array}{l}\text { all of the independent variables in the regression } \\ \text { model have significant effects on the dependent } \\ \text { variable. }\end{array} & \\ \hline \text { C. } & \begin{array}{ll}\text { one or more of the independent variables in the } \\ \text { regression model have a significant effect on the } \\ \text { dependent variable. }\end{array} & \text { D. } & \text { None of the above is correct. }\end{array}\right]$

C. Sample			D. Population		
249)	What does the Y intercept (b_{0}) represent?				A
	A. The predicted value of Y when $\mathrm{X}=0$.			The estimated change in average Y per unit change in X .	
	C. The predicted value of Y.		D. The mean value of X .		
250)	What does the least squares method do exactly?				C
	A	Minimizes the distance between the data points	B.	Finds the least problematic regression line	
	C. Finds those (best) values of the intercept and slope D that provide us with the smallest value of the residual sum of squares			Finds those (best) values of the intercept and slope that provide us with the smallest value of the sum of residuals	
251)	Which of the following measures is optimal for comparing the goodness of the fit of competing regression models involving the same dependent variable?				D
	A. ${ }^{\text {A }}$ The intercept		B.	The slope coefficient	
	C. R-square		D.	Standard deviation of the residuals	
252)	What does the following expression ($\left.\mathrm{H}_{0}: \beta_{1}=\beta_{2}=0\right)$ mean?				C
	A. One of the independent variables is useful in predicting the dependent variable B. $\begin{aligned} & \text { Both of the independent variables are useful in } \\ & \text { predicting the dependent variable }\end{aligned}$				
	C	None of the independent variables is useful in predicting the dependent variable	D.	There is a third independent variable predicting the dependent variable	
253)	Which of the following criteria is the most optimal for assessing the goodness of the fit of a multiple linear regression model?				A
	A. Adjusted R-square		B. Intercept		
	C. R-square		D. Slope		
254)	In which cases are the standardized coefficients suggested to be used to identify the relative importance of the independent variables in a multiple regression model?				B
	A. When all the independent variables are measured using the same metric		B. When not all the independent variables are measured using the same metric		
	C	When not all the dependent variables are measured using the same metric	D. When all the independent variables are measured using an ordinal scale ranging from 1 to 6		
255)	Which one of these statements is not a Gauss-Markov assumption?				B
	A.	That the error term has a conditional mean of zero		Absence of influential observations.	
		That the error term has constant variance	D.	That the errors are uncorrelated	
256)	Why should we not include irrelevant variables in our regression analysis?				B
	A.	Your R-squared will become too high	B.	Because of data limitations	
	C.	It is bad academic fashion not to base your variables on sound theory	D.	We increase the risk of producing false significant results	
257)	How can we deal with the gap of the assumption of linearity?				A
	A.	Include a squared term	B.	Include an interaction term	
	C.	Use robust regression	D. Use the margins command		
258)	Which statistics can help us detect multicollinarity?				A
	A.	Variance inflation factor (VIF)	B.	Durbin-Watson	
		F-Statistics	D.	Tolerance values +1	
259)	What does heteroskedasticity mean?				D

271)A study was made on the effect of temperature on the yield of a chemical process. The following data were recorded: Temperature $=-5,-3,0,1,4,6$ and Yield $=2,5,19,7,5,1$. What type of relation exists between X and Y ?			A
	A. Curvi-Linear	B. Non-Linear	
	C. Simple Linear	D. No relation	
272)A a A	A study was made on the effect of temperature on the y recorded: Temperature $=-5,-3,0,1,4,6$ and Yield $=2$, while fitting second degree curve to this data?	ield of a chemical process. The following data were $5,19,7,5,1$. What will be the sign of b_{2} coefficient	C
	A. Positive	B. May be positive or negative	
	C. Negative	D. Can't be determined	
273) ${ }^{\text {A }}$	A study was made on the effect of temperature on the y recorded: Temperature $=-5,-3,0,1,4,6$ and Yield $=2$, while fitting second degree curve to this data?	ield of a chemical process. The following data were $5,19,7,5,1$. What will be the sign of b_{1} coefficient	C
	A. Negative	B. May be positive or negative	
	C. Positive	D. None of the others	
274)	A scatterplot is		D
	A. one-dimensional graph of randomly scattered data	B. two-dimensional graph of a straight line	
	C. two-dimensional graph of a curved line	D. two-dimensional graph of data values.	
275)	Correlation and regression are concerned with		B
	A. the relationship between two categorical variables.	B. the relationship between two quantitative variables.	
	C. the relationship between a quantitative explanatory variable and a categorical response variable	D. the relationship between a categorical explanatory variable and a quantitative response variable	
276)	What is the effect of an outlier on the value of a correla	tion coefficient?	C
	A. An outlier will always decrease a correlation coefficient	B. An outlier will always increase a correlation coefficient.	
	C. An outlier might either decrease or increase a correlation coefficient, depending on where it is in relation to the other points.	D. An outlier will have no effect on a correlation coefficient.	
277)	Which of the following is a deterministic relationship?		C
	A. The relationship between hair color and eye color.	B. The relationship between father's height and son's height.	
	C. The relationship between height in inches and height in centimeters.	D. The relationship between height as determined with a ruler and height as determined by a tape measure.	
278)	The regression equation between father's heights and .58 x . One student was 72 inches tall; his father's heig student?	student's heights for the 79 male students is $y^{\wedge}=30+$ ht was 65 inches. What is the estimated height for this	A
	A. 67.7	B. 72	
	C. 30	D. 65	
279)	The regression equation between father's heights and x. One student was 72 inches tall; his father's height	student's heights for the 79 male students is $\mathrm{y}^{\wedge}=30+.58$ was 65 inches. What is the residual for this student?	D
	A. 7	B. 65	
	C. 30	D. 4.3	
	The correlation between father's heights and student's heights for the 79 male students is $\mathrm{r}=0.9$. What is the proportion of variation explained by father's heights?		D
	A. 0.90	B. 0.448	

339) In the least squares line, $\sum(Y-\hat{Y})^{2}$ is			D
	A. Maximum	B. Zero	
	C. One	D. Least	
340)	Which of the following assumptions are required to show the consistency, unbiasedness and efficiency of the OLS estimator? i) $\mathrm{E}\left(u_{t}\right)=0$ ii) $\operatorname{Var}\left(u_{t}\right)=\sigma^{2}$ iii) $\operatorname{Cov}\left(u_{t}, u_{t-j}\right)=0 \forall j$ iv) $u_{\iota} \sim \mathrm{N}\left(0, \sigma^{2}\right)$		C
	A. (ii) and (iv) only	B. (i) and (iii) only	
	C. (i), (ii), and (iii) only	D. (i), (ii), (iii), and (iv)	

	C. Treatment	D. None of these	
	Which design yield maximum degree of freedom for		A
	A. CRD	B. Latin square	
	C. RCBD	D. None of these	
452	Which design is not suitable for field		A
	A. CRD	B. Latin square	
	C. RCBD	D. None of these	
453	Error sum of square never be		A
	A. Negative	B. Positive	
	C. Negative and Positive	D. None of these	
454	If Trt=4 and TrtMS $=35$ then TrtSS will be		C
	A. 101	B. 103	
	C. 105	D. 107	
455ff	If TrSS=116.25 with df $=3$, ErrorSS=28.5 with df=6	talSS $=164.25$ with $\mathrm{df}=11$. The Block F ratio will be	C
	A. 0.053	B. 1.053	
	C. 2.053	D. 3.053	
456	The sum of residual is always		A
	A. 0	B. 0.5	
	C. 1	D. 2	
457 ${ }^{\text {A }}$	Bivariate analysis has		B
	A. One variable	B. Two variable	
	C. Three variable	D. Multiple variables	
458 \|	In multivariate analysis there is		C
	A. Single response variable	B. Two response variables	
	C. More than one response variable	D. None of these	
459B	Bivariate statistics is ___in nature		B
	A. Descriptive	B. Inferential	
	C. Descriptive and inferential	D. None of these	
460	Univariate is a		A
	A. Descriptive statistics	B. Inferential statistics	
	C. Descriptive and inferential	D. None of these	
461 M	MANOVA is an extension of ANOVA when there	----------	D
	A. One dependent variable	B. Two dependent variables	
	C. More than one independent variable	D. More than one dependent variable	
462 \|	Which Multivariate techniques reduce the number	variables	C
	A. Factor analysis	B. Principal component analysis	
	C. Both factor analysis and principal component analysis	D. Neither factor analysis nor principal component analysis	
	Principal component analysis is used when		D
	A. The number of variables is large	B. The variables are highly correlated	
	C. The sample size is large	D. all of these	
	Wilks lambda statistic is based on the principal of		B
	A. Least square	B. Likelihood ratio	
	C. Variance ratio	D. Lagrange multiplier	
465 ${ }^{\text {A }}$	An experiment design is		C
	A. A map	B. An architect	
	C. A plan of experiment	D. All of these	
466	Which one of the following is not a contrast		A
	A. $\mathrm{T} 1+2 \mathrm{~T} 2-\mathrm{T} 3$	B. T1-T3	
	C. T1-2T2+T3	D. -T1+2T2-T3	
467,Which one of the following is contrast			C

		Answer Key
491)	The feed of a certain type of hormone increases the mean weight of chicks by 0.3 ounces. A sample of 25 eggs has a mean increase of 0.4 ounces with its standard deviation as 0.20 ounces. What is the value of t-statistic?	A
	A. 2.5 B. ${ }^{\text {A }}-10$	
	C. -2.5 D. 10	
492)	Scientists claim that a diet will increase the mean weight of eggs at least by 0.3 ounces. A sample of 25 eggs has a mean increase of 0.4 ounces with a S.D. of 0.20 . What will be the null hypothesis for testing this claim about diet?	A
	$\begin{array}{ll}\text { A. } \mu \geq 0.3 & \text { B. } \mu \leq 0.3\end{array}$	
	C. $\mu>0.3$ D. $\mu>0.4$	
493)	Scientists claim that a diet will increase the mean weight of eggs by 0.3 ounces. A sample of 25 eggs has a mean increase of 0.4 ounces with a S.D. of 0.20 . What will be the null hypothesis for testing this claim about diet?	C
	$\begin{array}{ll}\text { A. } \mu \geq 0.3 & \text { B. } \mu \leq 0.3\end{array}$	
	$\begin{array}{ll}\text { C. } \mu>0.3 & \text { D. } \mu>0.4\end{array}$	
494)	The type-I error occurs when	A
	A. Rejecting the TRUE null hypothesis ${ }^{\text {a }}$ B. Rejecting the FALSE null hypothesis	
	C. Don't rejecting the FALSE null hypothesis \quad D. Don't rejecting the TRUE null hypothesis	
495)	The type-II error occurs when	C
	A. Rejecting the TRUE null hypothesis ${ }^{\text {a }}$ B. Rejecting the FALSE null hypothesis	
	C. Don't rejecting the FALSE null hypothesis \quad D. Don't rejecting the TRUE null hypothesis	
496)	The POWER of test occurs when	B
	A. Rejecting the TRUE null hypothesis ${ }^{\text {a }}$ B. Rejecting the FALSE null hypothesis	
	C. Don't rejecting the FALSE null hypothesis \quad D. Don't rejecting the TRUE null hypothesis	
497)	Null and Alternate hypothesis are the statements about	A
	A. Population parameters \quad B. ${ }^{\text {a }}$ Sample statistics	
	C. Sampling Distribution with replacement \quad D. Sampling Distribution without replacement	
498)	To test the Average Marks of the whole class in a statistics course, if the researcher has no knowledge about the population variance and $s / h e$ selects a sample size less than 30 ; then s / he must use	D
	A. Chi-square test B. F-test	
	C. Z-test D. t -test	
499)	To test the Average Marks of the whole class in a statistics course, if the researcher has the knowledge about the population variance and s / he selects a sample size less than 30 ; then $\mathrm{s} /$ he must use	C
	A. Chi-square test ${ }^{\text {a }}$ B. F-test	
	C. Z-test D. t -test	
500)	To test the Average Marks of the whole class in a statistics course, if the researcher has no knowledge about the population variance and $\mathrm{s} /$ he selects a sample size more than 30 ; then $\mathrm{s} /$ he must use	C
	A. Chi-square test ${ }^{\text {a }}$. F-test	
	C. Z-test D. t-test	
501)	To test the Average Marks of the whole class in a statistics course, if the researcher has the knowledge about the population variance and s / he selects a sample size more than 30 ; then $\mathrm{s} /$ he must use	C
	A. Chi-square test B. F-test	
	C. Z-test D. t -test	
502)	A sample is used to	C
	A. Increase time ${ }^{\text {a }}$ B. Reduced Efficiency	
	C. Reduced Cost D. Least Accuracy	
503)	When applying a certain rule or formula to the collected data from a random experiment; then the obtained quantity is known as	C
	A. Statistics B. Estimator	
	C. Estimate D. Parameter	
504)	A manufacturer claims that the average life of his light bulbs is more than 3000 hrs . A random sample of 36 bulbs is tested and found to have an average lifetime of 2985 and standard deviation 15 . Choose the value of the test statistic.	B
	A. 9 B. 6	
	C. 8 D. 7	
505)	Inference about population parameters can be obtained through	D
	A. Estimation B. ${ }^{\text {a }}$ Testing of Hypothesis	

C. Interval Estimation
D. Estimation and Testing of Hypothesis
506) A manufacturer claimed that the average life of its product is at least 50 days. Choose the appropriate alternative hypothesis that population mean will be
A. More than 50
B. Less than 50
C. Equal to 50
D. At most 50
507) A manufacturer claimed that the average life of its product will not be more than 50 days. Choose the appropriate alternative hypothesis that population mean will be
A. More than 50
B. Less than 50
C. Equal to 50
D. At most 50
508) A manufacturer claimed that the average life of its product will be more than 50 days. Choose the appropriate alternative hypothesis that population mean will be
A. More than 50
B. Less than 50
C. Equal to 50
D. At most 50
509) A manufacturer claimed that the average life of its product is fewer than 50 days. Choose the appropriate alternative hypothesis that population mean will be
A. More than 50
B. Less than 50
C. Equal to 50
D. At most 50
510) The numerical values computed from sample data randomly drawn from a population are called
A. Parameters
B. Sampling Unit
C. Sampling Frame
D. Statistics
511) The numerical values computed from sample data randomly drawn from a sample are called
A. Parameters
B. Sampling Unit
C. Sampling Frame
D. Statistics
512) The test used for testing the significance in an analysis of variance table is
A. Chi-square test
B. F-test
C. Z-test
D. t-test
513) For testing the equality of two means using t-test; there is an assumption that population means are equal. This assumption about equality of variances will be tested using the
A. Chi-square test
B. F-test
C. Z-test
D. t-test
514) For computing the confidence interval about a single population variance; the following test will be used
A. Chi-square test
B. F-test
C. Z-test
D. t-test
515) A researcher is interested to test a certain value of variability among the plants' heights; the following test will be used
A. Chi-square test
B. F-test
C. Z-test
D. t-test
516) The point where the Null Hypothesis being rejected is called as
A. Significant value
B. Rejection Value
C. Acceptance Value
D. Critical Value
517) For valid statistical inference there is importance of sampling. select the order of sampling from best to worst
A. simple random, stratified, convenience
B. simple random, convenience, stratified
C. stratified, simple random, convenience
D. stratified, convenience, simple random
518) What will be the value of test-statistic when testing the hypothesis that average temperature of a location is $2^{0} \mathrm{C}$. The recorded temperatures $\left({ }^{0} \mathrm{C}\right)$ of randomly selected days are $-4,0,12,0$
A. Zero
B. $-\infty$
C. $+\infty$
D. Not possible to find a value
519) An estimator " q " is an unbiased estimator of the population mean " Q " if
A. $E(x)=\mu$
B. $E(q)=Q$
C. $E(Q)=Q$
D. Each value of sample points be the same
520) A test is said to be most powerful test of size α, if
A. Among all other test of size α or less it has the largest
B. Among all other test of size α or greater it has the largest power
$1-\alpha$
C. $\begin{aligned} & \text { Among all other test of size } \alpha \text { or greater it has the } \\ & \text { smallest power }\end{aligned}$
D. Among all other test of size α or greater it has the largest β smallest power 521) A set of jointly sufficient statistics is defined to be minimal sufficient if and only if
A. It is a function of some other set of sufficient statistics
B. It is a function of every other set of sufficient statistics

	C. Statistical decision	D. Statistical hypothesis	
539)	There are two main branches of statistical inference, namely		D
	A. Biased estimator and unbiased estimator	B. Level of significance and degree of freedom	
	C. Point estimate and interval estimate	D. Estimation of parameter and testing of hypothesis	
540)	The process of using sample data to estimate the values of unknown population parameters is called		D
	A. Estimate	B. Interval Estimate	
	C. Estimator	D. Estimation	
541)	'Statistic' is an estimator, and its computed value(s) is called		B
	A. Interval estimate	B. Estimate	
	C. Estimator	D. Estimation	
542)	The end points of a confidence interval are called		B
	A. Confidence coefficient	B. Confidence limits	
	C. Parameters	D. Width of the confidence interval	
543)	The difference between the two end points of a confidence int	terval is called	D
	A. Confidence coefficient	B. Confidence limits	
	C. Parameters	D. Width of the confidence interval	
544)	A set (range) of the values calculated from the sample data and it is likely to contain the true value of the parameter with some probability is called		D
	A. Level of Confidence	B. Confidence limits	
	C. Point Estimate	D. Interval Estimate	
545)	The estimator is said to be ----- if the mean of the estimator is not equal to the mean of the population parameter.		C
	A. Positively Biased	B. Negatively Biased	
	C. Biased	D. Unbiased	
546)	Estimation can be classified into		D
	A. Biased and Unbiased	B. One sided and sided testing	
	C. Type-I and Type-II	D. Point estimation and interval estimation	
547)	The estimate is the observed value of an		C
	A. Interval estimation	B. Estimation	
	C. Estimator	D. Unbiased estimator	
548)	A single value used to estimate the value of population parameter is called		B
	A. Level of significance	B. Point estimate	
	C. Confidence limits	D. Interval estimate	
549)	The probability associated with confidence interval is called		A
	A. Confidence coefficient	B. Confidence limits	
	C. Degrees of freedom	D. Width of the Confidence Interval	
550)	Each of the following increases the width of a confidence interval except		C
	A. Increased confidence level	B. Increased variability	
	C. Increased sample size	D. Decreased sample size	
551)	If a researcher takes a large enough sample, then he/she will almost always obtain		D
	A. virtually significant results	B. practically significant results	
	C. consequentially significant results	D. statistically significant results	
552)	Which of the following is true of the null and alternative hypotheses		A
	A.Exactly one hypothesis must be true	B. both hypotheses must be true	
	C. It is possible for both hypotheses to be true	D. It is possible for neither hypothesis to be true	
553)	A type II error occurs when		A
	A. the null hypothesis is incorrectly accepted when it is false	B. the null hypothesis is incorrectly rejected when it is true	
	C. the sample mean differs from the population mean	D. the test is biased	
554)	The hypothesis that an analyst is trying to prove is called the		B
	A. elective hypothesis	B. alternative hypothesis	
	C. optional hypothesis	D. null hypothesis	
555)	Which of the following is true about chi-square distribution		D
	A. It is skewed distribution	B. Its shape depends on number of degrees of freedom (df)	
	C. As the degrees of freedom increases its shape becomes more symmetrical	D. It is skewed, its shape depends on df and it becomes symmetrical as df increases	

556) To test independence between two attributes in contingency table sum of observed frequencies must be ------ expected
A. Greater than
B. Equal to
C. Less than
D. Less than or equal to
557) To test independence between two attributes in contingency table, Test is always
A. Right tail
B. Left tail
C. Two tailed
D. May be Right tail or Left tail
558) Width of confidence interval for population mean becomes large if
A. Sample size becomes large
B. Standard deviation becomes small
C. Level of significance becomes large
D. Level of confidence becomes large
559) To test the equality of several population means, the appropriate test statistics is -----
A. F-test
B. Chi-Square test
C. t-test
D. Z-test
560) To test the equality of several population variances, the appropriate test statistics is -----
A. F-test
B. Chi-Square test
C. t-test
D. Z-test
561) To test the equality of two normally distributed population means and two population variances; the appropriate test statistics are ----- and ------ respectively
A. t -test and Z-test
B. t -test and chi-square test
C. t -test and F-test
D. F-test and t-test
562) To test equality of two population proportion for large sample sizes appropriate test statistic is
A. F-test
B. Chi-Square test
C. Z-test and Chi-Square test
D. Z-test
563) If random variable Y is distributed as normal with mean 0 and variance equal to 1 then Y^{2} will be distributed as
A. Standard Normal
B. Chi-square
C. Normal
D. t
564) If X and Y are two independently distributed standard normal variables, then $\mathrm{X}^{2}+\mathrm{Y}^{2}$ will be distributed as --------------------
A. Standard Normal
B. Chi-Square
C. F
D. Normal
565) If X and Y are two independently distributed standard normal variables, then $\mathrm{X}^{2} / \mathrm{Y}^{2}$ will be distributed as --------------------
A. Standard Normal
B. Chi-Square
C. F
D. Normal
566) Which of the following is a good definition of standard error
A. The variability of scores
B. The typical amount by which sample variances deviate from the population variance
C. The estimated standard deviation of scores
D. The typical amount by which sample means deviate from the population mean
567) The sample standard deviation of a sample of 9 scores is 8.3 . What is the best estimate of the standard deviation of the population from which the sample was taken

A.	0.27
C.	27.7

B. 2.77
C. 27.7
D. 27
568) The paired t-test is really
B. A one-sample test based on the difference scores
A. Two one sample tests
D. None of the A, B and C options
569) One circumstance in which researcher should not use the t-test is
A. If the scores from both groups are very skewed
B. If the scores from both groups are normally distributed
C. If the data comes from questionnaire
D. If researcher wants to generalize from a sample
570) The simplest form of inferential statistics, which uses known sample evidence (statistic) to draw conclusions regarding unknown population characteristics (parameter) is known as
A. Descriptive Statistics
B. Inferential Statistics
C. Testing of Hypothesis
D. Estimation
571) If an estimator achieves improved reliability and precession as the sample size becomes larger then such an estimator is called
A. Consistent
B. Efficient
C. Sufficient
D. Unbiased
572) Of all possible unbiased estimators of some parameter the one with the smallest variance is said to be

587) To develop interval, estimate of any parameter of population, the value which is added or subtracted from the point estimate is classified as
A. Margin of Efficiency
B. Margin of Consistency
C. Margin of Biasedness
D. Margin of Error
588) Considering the sample size for doing statistical inference, the sampling distribution of standard error decreases when the
A. Size of sample increases
B. Size of sample decreases
C. Margin of error increases
D. Margin of error decreases
589) For testing the ratio of defective items out of randomly selected items from a shipment; the appropriate parameter will be
A. Mean
B. Proportion
C. Variance
D. Mode
590) For a sample to be truly representative of the population, it must be
A. Fixed
B. Specific
C. Random
D. Casual
591) Statistical Inference can be made using ---- data set(s)
A. Only Primary
B. Only Secondary
C. Both Primary and Secondary
D. Either of Primary or Secondary
592) The mean of 85 sample points is 510 and standard error of mean is 4.99 . The 95% confidence limits will be
A. 500,520
B. 400,520
C. 200,700
D. 470,570
593) A research firm conducted a survey to determine the mean amount smokers spend on cigarettes during a day. A sample of 100 smokers revealed that the sample mean is $\$ 5$ and sample standard deviation is $\$ 2$. Assume that the sample was drawn from a normal population. The point estimate of the population mean is
A. 2
B. 4
C. 5
D. 100
594) A research firm conducted a survey to determine the mean amount smokers spend on cigarettes during a day. A sample of 100 smokers revealed that the sample mean is $\$ 5$ and sample standard deviation is $\$ 2$. Assume that the sample was drawn from a normal population. The point estimate of the population variance is
A. 2
B. 4
C. 5
D. 100
595) A research firm conducted a survey to determine the mean amount smokers spend on cigarettes during a day. A sample of 100 smokers revealed that the sample mean is $\$ 5$ and sample standard deviation is $\$ 2$. Assume that the sample was drawn from a normal population. The point estimate of the population variance is
A. 2
B. 4
C. 5
D. 100
596) Which of the following is not one of the assumptions made in the analysis of variance?

A.	Each sample is an independent random sample

B. The distribution of the response variable is a normal curve
within each population
C. The different populations all have the same mean
D. The different populations all have the same standard deviation σ
597) Which one of the following choices describes a problem for which an analysis of variance would be appropriate?
A. Comparing the proportion of successes for three different treatments of anxiety. Each treatment is tried on 100 patients
B. Analyzing the relationship between high school GPA and college GPA
C. Comparing the mean birth weights of newborn babies
D. Analyzing the relationship between gender and opinion about capital punishment (favor or oppose)
598) Ninety people with high cholesterol are randomly divided into three groups of thirty, and a different treatment program for decreasing cholesterol is assigned to each group. The response variable is the change in cholesterol level after two months of treatment. An analysis of variance will be used to compare the three treatments. What null hypothesis is tested by this Ftest?
A. The sample variances are equal for the three treatment groups
C. $\begin{aligned} & \text { The sample means are equal for the three treatment } \\ & \text { groups }\end{aligned}$
B. The population variances are equal for the three treatments
D.
D. The population means are equal for the three treatments
599) A shopper wanted to test whether there was a difference in the average waiting times at the check-out counter among 5 different supermarkets. She selected a random sample of 20 shoppers from each of the five supermarkets. What is the null hypothesis for this situation?

609)	In a past General Social Survey, a random sample of men and women answered the question "Are you a member of any sports clubs?" Based on the sample data, 95% confidence intervals for the population proportion who would answer "yes" are .13 to .19 for women and .247 to .33 for men. Based on these results, you can reasonably conclude that			
	A.	At least 25% of American men and American women belong to sports clubs		At least 16\% of American women belong to sports clubs
		There is a difference between the proportions of American men and American women who belong to sports clubs.		There is no conclusive evidence of a gender difference in the proportion belonging to sports clubs

610) Suppose a 95% confidence interval for the proportion of Americans who exercise regularly is 0.29 to 0.37 . Which one of the following statements is FALSE?
A. It is reasonable to say that more than 25% of Americans exercise regularly.
B. It is reasonable to say that more than 40% of Americans exercise regularly.
C. The hypothesis that 33% of Americans exercise regularly cannot be rejected.
D. It is reasonable to say that fewer than 40% of Americans exercise regularly.
611) Null and alternative hypotheses are statements about:
A. population parameters.
B. sample parameters.
C. sample statistics.
D. it depends - sometimes population parameters and sometimes sample statistics.
612) A hypothesis test is done in which the alternative hypothesis is that more than 10% of a population is left-handed. The pvalue for the test is calculated to be 0.25 . Which statement is correct?
A. We can conclude that more than 10% of the population
B. We can conclude that more than 25% of the population is is left-handed. left-handed.
C. We can conclude that exactly 25% of the population is
D. We cannot conclude that more than 10% of the population left-handed is left-handed
A. $\left\lvert\, \begin{aligned} & \text { At least } 25 \% \text { of American men and American women } \\ & \text { belong to }\end{aligned}\right.$
C. There is a difference between the proportions of American men and American women who belong to sports clubs.
613) It is known that for right-handed people, the dominant (right) hand tends to be stronger. For left-handed people who live in a world designed for right-handed people, the same may not be true. To test this, muscle strength was measured on the right and left hands of a random sample of 15 left-handed men and the difference (left - right) was found. The alternative hypothesis is one-sided (left hand stronger). The resulting t-statistic was 1.80 . The d.f. will be

A.	14

B. 28
C. 18
D. 15
620) A test of H0: $\mu=0$ versus Ha: $\mu>0$ is conducted on the same population independently by two different researchers. They both use the same sample size and the same value of $\alpha=0.05$. Which of the following will be the same for both researchers?
A. The p-value of the test.
B. The power of the test if the true $\mu=6$.
C. The value of the test statistic.
D. The decision about whether or not to reject the null hypothesis.
621) Which of the following is not a correct way to state a null hypothesis?
A. $\mathrm{H}_{0}: \mathrm{p}_{1}-\mathrm{p}_{2}=0$
B. $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$
C. $\mathrm{H}_{0}: \mu_{\mathrm{d}}=10$
D. $\pi=0.03$
622) A test to screen for a serious but curable disease is similar to hypothesis testing, with a null hypothesis of no disease, and an alternative hypothesis of disease. If the null hypothesis is rejected treatment will be given. Otherwise, it will not. Assuming the treatment does not have serious side effects, in this scenario it is better to increase the probability of:
A. making a Type I error, providing treatment when it is not B. making a Type I error, not providing treatment when it is needed. needed.
C. making a Type II error, providing treatment when it is
D. making a Type II error, not providing treatment when it is not needed.
needed.
623) A random sample of 25 college males was obtained and each was asked to report their actual height and what they wished as their ideal height. A 95% confidence interval for $\mu \mathrm{d}=$ average difference between their ideal and actual heights was $0.8^{\prime \prime}$ to $2.2^{\prime \prime}$. Based on this interval, which one of the null hypotheses below (versus a two-sided alternative) can be rejected?
A. $\mathrm{H}_{0}: \mu_{\mathrm{d}}=0.5$
B. $\mathrm{H}_{0}: \mu_{\mathrm{d}}=1.0$
C. $\mathrm{H}_{0}: \mu_{\mathrm{d}}=1.5$
D. $\mathrm{H}_{0}: \mu_{\mathrm{d}}=2.0$
624) The average time in years to get an undergraduate degree in computer science was compared for men and women. Random samples of 100 male computer science majors and 100 female computer science majors were taken. Choose the appropriate parameter(s) for this situation.
A. One population proportion p.
B. Difference between two population proportions $\mathrm{p}_{1}-\mathrm{p}_{2}$.
C. One population mean μ_{1}
D. Difference between two population means $\mu_{1}-\mu_{2}$
625) If the word significant is used to describe a result in a news article reporting on a study

A.	The p-value for the test must have been very large	B.	The effect size must have been very large.
C.	The sample size must have been very small.	D.	It may be significant in the statistical sense, but not in the everyday sense.

626) A random sample of 5000 students were asked whether they prefer a 10 -week quarter system or a 15 week semester system.

Of the 5000 students asked, 500 students responded. The results of this survey
A. can be generalized to the entire student body because the sampling was random.
. can be generalized to the entire student body because the
C. should not be generalized to the entire student body margin of error was 4.5%.
because the non-response rate was 90%.
D. should not be generalized to the entire student body because the margin of error was 4.5%.
627) A significance test based on a small sample may not produce a statistically significant result even if the true value differs substantially from the null value. This type of result is known as
A. the significance level of the test
B. the power of the study
C. a Type I error
D. a Type II error
628) An observational study found a statistically significant relationship between regular consumption of tomato products (yes,

629)	An observational study found a statistically significant relationship between regular consumption of tomato products (yes, no) and development of prostate cancer (yes, no), with lower risk for those consuming tomato products. Which of the following is a valid conclusion from this finding?		B
	A. Something in tomato products causes lower risk of prostate cancer.	B. Based on this study, the relative risk of prostate cancer, for those who do not consume tomato products regularly compared with those who do, is greater than one	
	C. If a new observational study were to be done using the same sample size and measuring the same variables, it would find the same relationship.	D. Prostate cancer can be prevented by eating the right diet.	
630)	The best way to determine whether a statistically significant difference in two means is of practical importance is to		A
	A. find a 95% confidence interval and notice the magnitude of the difference.	B. repeat the study with the same sample size and see if the difference is statistically significant again	
	C. see if the p-value is extremely small.	D. see if the p-value is extremely large.	
631)	A large company examines the annual salaries for all of the men and women performing a certain job and finds that the means and standard deviations are $\$ 32,120$ and $\$ 3,240$, respectively, for the men and $\$ 34,093$ and $\$ 3521$, respectively, for the women. The best way to determine if there is a difference in mean salaries for the population of men and women performing this job in this company is		B
	A. to compute a 95% confidence interval for the difference. B. to subtract the two sample means.		
	C. to test the hypothesis that the population means are the same versus that they are different.	D. to test the hypothesis that the population means are the same versus that the mean for men is higher.	
632)	One problem with hypothesis testing is that a real effect may not be detected. This problem is most likely to occur when		A
	A. the effect is small and the sample size is small. \quad B. the effect is large and the sample size is small.		
	C. the effect is small and the sample size is large. \quad D. the effect is large and the sample size is large.		
633)	If we do not reject the null hypothesis, we conclude that:		B
	A. There is enough statistical evidence to infer that the alternative hypothesis is true.	B. There is not enough statistical evidence to infer that the alternative hypothesis is true.	
	C. There is enough statistical evidence to infer that the null hypothesis is true.	D. There is not enough statistical evidence to infer that the null hypothesis is true.	
634)	The p -value of a test is the:		C
	A. $\begin{array}{l}\text { Smallest significance level at which the null hypothesis } \\ \text { cannot be rejected. }\end{array}$ B. $\begin{array}{l}\text { Largest significance level at which the null hypothesis } \\ \text { cannot be rejected. }\end{array}$		
635)	To determine the p-value of a hypothesis test, which of the following is not needed?		D
	A. Whether the test is one-tail or two-tail	B. The value of the test statistic	
	C. The form of the null and alternative hypotheses	D. The level of significance	
636)	Which of the following p -values will lead us to reject the null hypothesis if the significance level of the test is 5% ?		B
	A. 0.150	B. 0.034	
	C. 0.051	D. 0.550	
637)	Suppose we reject a null hypothesis at the 5% level of significance. For which of the following levels of significance do we also reject the null hypothesis? A. 6%		A
	C. 4% D. 2%		
638)	Which of the following statements about hypothesis testing is true?		A
	A. If the p-value is greater than the significance level, we fail to reject H_{0}.	B. A type II error is rejecting the null hypothesis when it is true.	
	C. If the alternative hypothesis is that the population mean is greater than a specified value, the test is a two-tailed test.	D. The significance level equals one minus the probability of a type-I error.	
639)	The purpose of hypothesis testing is to:		B
	A. test how far the mean of a sample is from zero	B. determine the appropriate value of the significance level	
	C. determine the appropriate value of the significance level	D. Derive the standard error of the data	
640)	To test a hypothesis involving proportions, both np and $\mathrm{n}(1-\mathrm{p})$ should		B
	A. Be at least $30^{\text {c }}$	B. Be greater than 5	
	C. Lie in the range from 0 to 1	D. Be greater than 50	

		Answer Key
641)	In a Binomial Distribution, if ' n ' is the number of trials and ' p ' is the probability of success, then the mean value is given by \qquad	A
	A. np (B. n	
	C. p (${ }^{\text {a }}$ ($\mathrm{np}(1-\mathrm{p})$	
642)	In a Binomial Distribution, if p, q and n are probability of success, failure and number of trials respectively then variance is given by \qquad	B
	C. $\mathrm{np}^{2} \mathrm{q}$ (${ }^{\text {d. }} \mathrm{npq}^{2}$	
643)	Nature of the binomial random variable X is:	C
	A. Categorical ${ }^{\text {a }}$ B. Qualitative	
	C. Discrete D. Continuous	
644)	In a binomial probability distribution, the sum of probability of failure and probability of success is always:	D
	A. Zero B. Less than 0.5	
	C. Greater than 0.5 D. One	
645)	In a binomial experiment, the successive trials are:	B
	A. Dependent B. Independent	
	C. Mutually exclusive D. Fixed	
646)	In a binomial experiment with three trials, the variable can take:	C
	A. 2 values ${ }^{\text {B. }} 3$ values	
	C. 4 values D. 5 values	
647)	The shape of the binomial probability distribution depends upon the values of its:	D
	A. Mean B. Variance	
	C. Random variable D. Parameters	
648)	In binomial distribution the numbers of trials are:	D
	A. Very small ${ }^{\text {a }}$ B. Very large	
	C. Random D. Fixed	
649)	In a binomial probability distribution, relation between mean and variance is:	C
	A. Mean < Variance ${ }^{\text {a }}$ B. Mean $=$ Variance	
	C. Mean > Variance \quad D. ${ }^{\text {All A, B and C are possible }}$	
650)	Binomial distribution becomes __ if $\mathrm{n}=1$.	B
	A. Hypergeometric distribution \quad B. Bernoulli distribution	
	C. Uniform distribution D. Normal distribution	
651)	Which of the following is not property of a binomial experiment?	C
	A. Probability of success remains constant \quad B. n is fixed	
	C. Successive trials are dependent ${ }^{\text {d. It has two parameters }}$	
652)	The binomial probability distribution is symmetrical when	A
	A. $\mathrm{p}=\mathrm{q}$ (B. $\mathrm{p}<\mathrm{q}$	
653)	The binomial distribution is negatively skewed if:	C
	A. $\mathrm{p}<0.5$ B. $\mathrm{p}=0.5$	
	C. $p>0.5$ D. $p=1$	
654)	If a binomial probability distribution has parameters ($n, p)=(10,0.3)$, the probability of $x=11$ is:	A
	A. 0 B. B. 1	
	C. 0.03 D. 0.3	
655)	If a binomial probability distribution if $\mathrm{n}=6, \mathrm{p}=0.9$, then $\mathrm{P}(\mathrm{X}=4.5)$ is:	A
	A. Zero B. Less than Zero	
	C. Greater than Zero but less than One \quad D. One	
656)	If three coins are tossed, the probability of two heads is:	B
	A. $1 / 8$ B. $3 / 8$	
	C. 2/3 D. 0	
657)	The hypergeometric distribution has __ parameters.	B
	A. 2 B. 3	
	C. 4 D. None of these	

749) Which one of these variables is a continuous random variable?
A. The number of tattoos a randomly selected person has
B. The number of women taller than 68 inches
C. The time it takes a randomly selected student to
C. complete an exam.
D. The number of correct guesses on a multiple choice test
750) Which one of these variables is a binomial random variable?
A. $\begin{aligned} & \text { Time it takes a randomly selected student to complete a } \\ & \text { multiple choice exam }\end{aligned}$
B. Number of textbooks a randomly selected student bought this term
C. Number of women taller than 68 inches in a random
C. $\begin{aligned} & \text { Nample of } 5 \text { women } \\ & \text { samplen }\end{aligned}$
D. Number of CDs a randomly selected person owns
751) A medical treatment has a success rate of 0.8 . Two patients will be treated with this treatment. Assuming the results are independent for the two patients, what is the probability that neither one of them will be successfully cured?
A. 0.5
B. 0.16
C. 0.64
D. 0.04
752) If Y is a random variable with mean μ, then $\boldsymbol{E}(\boldsymbol{Y}-\boldsymbol{\mu})^{r}$ is known as
A. Variance
B. $\mathrm{r}^{\text {th }}$ raw moment
C. $\mathrm{r}^{\text {th }}$ central moment
D. None of these
753) The moment generating function of Binomial distribution is:
A. $\left(q+p e^{t n}\right)$
B. $\left(q+p e^{t}\right)^{n}$
C. $\left(q+p e^{t}\right)^{-n}$
D. $\left(q+p e^{t}\right)$
754) If the joint p.d.f of two random variables X and Y is defined as, $f(x, y)=x+y, 0 \leq \mathrm{x}, \mathrm{y} \leq 1$ and zero otherwise. What is the marginal distribution of X?
A. $x+1 / 2$
B. $x+1 / 4$
C. $x+y+1$
D. None of these
755) If the random variable takes negative values, then the negative values will have
A. Constant probabilities
B. Negative probabilities
C. Zero probabilities
D. None of these
756) If \boldsymbol{X} is a random variable, then $\boldsymbol{E}\left(\boldsymbol{e}^{t \boldsymbol{X}}\right)$ is known as
A. Probability generating function
B. Moment generating function
C. Characteristic function
D. None of these
757) If $\mathrm{F}(\mathrm{x})$ is distribution function of a discrete random variable X , then $\mathrm{F}(5)-\mathrm{F}(2)$ is equal to
A. $P(2<X \leq 5)$
B. $P(2 \leq X<5)$
C. $P(2 \leq X \leq 5)$
D. $P(2<X<5)$
758) Let X is Poisson(a) and Y is Poisson(b) be two independent random variables. Consider a random variable $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$. Then Z is
A. Poisson(a/b)
B. Poisson $(a-b)$
C. Poisson(a.b)
D. Poisson $(a+b)$
759) Which of the following is true?
A. Negative binomial is special case of Geometric
B. Geometric is special case of Negative binomial
A. distribution
B. distribution
C. Both A and B
D. Neither A nor B
760) When can we use a normal distribution to approximate a binomial distribution?
A. When n is greater than 30
B. When $n p$ is greater than or equal to 5
C. When $n q$ is greater than or equal to 5
D. When both $n p$ and $n q$ are greater than or equal to 5
761) Match the following binomial probability with its corresponding normal distribution probability statement after a continuity correction.
$\mathbf{P}(\mathbf{x}>25)$
A. $\mathrm{P}(\mathrm{x} \geq 25.5)$
B. $\mathrm{P}(\mathrm{x} \leq 25.5)$
C. $\mathrm{P}(\mathrm{x} \geq 24.5)$
D. $\mathrm{P}(\mathrm{x} \leq 24.5)$
762) An oil company conducts a geological study that indicates that an exploratory oil well should have a 20% chance of striking oil. The company is interested to find the probability that the first strike comes on the third well drilled. Which distribution will be used?
A. Negative binomial distribution
B. Geometric distribution
C. Binomial distribution
D. Bernoulli distribution

An oil company conducts a geological study that indicates that an exploratory oil well should have a 0.25 probability of striking oil. The company is interested to find the probability that the $3^{\text {rd }}$ strike comes on the $6^{\text {th }}$ well drilled. Which distribution will be used?

A.	Negative binomial distribution	B. Geometric distribution

C. Binomial distribution D. Bernoulli distribution			
764)	If X follows Geometric di	ability of success) then the Mean of X is	C
	A. P	B. np	
	C. 1/p	D. p^{2}	
765)	A continuous probability		B
	A. Constant	B. Graph	
	C. Table	D. None of these	
766)	In normal distribution, the proportion of observations that lies between 1 standard deviations of the mean is closest to		$\begin{aligned} & \text { B } \\ & \text { A. } \\ & \text { C. } \end{aligned}$
	$\text { A. } 0.5-$	A. 0.5-	
	$\text { C. } 0.99$	C. 0.99	
767)	The distribution of square of standard normal random variable will be		$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} . \\ & \mathrm{C} . \end{aligned}$
	A. F	A. F	
	C. Standard Normal	C. Standard Normal	
768)	In a binomial experiment with three trials, the binomial random variable can take		AA.C.
	A. 4 values	A. 4 values	
	C. 2 values	C. 2 values	
769)	A random variable X has a binomial distribution with $\mathrm{n}=9$, the variance of X is		$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~A} . \end{aligned}$
	A. 3 pq	A. 3 pq	
	C. $3 \sqrt{p q}$	C. $3 \sqrt{p q}$	
770)	The hyper geometric distribution has ---- parameters		CA.C.c
	A. 1	A. 1	
	C. 3	C. 3	
771)	Let X be a random variable with $\operatorname{Var}(\mathrm{X})=9$ then $\mathrm{SD}(2 \mathrm{X})=-----$		D
	A. 18	B. 36	
	C. 3	D. 6	
772)	The exponential curve is also like ---- curve		A
	A. Power	B. Logarithmic	
	C. Semi Logarithmic	D. Inverse	
773)	If $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A} / \mathrm{B}) \cdot \mathrm{P}(\mathrm{B})$ then both events are		A
	A. Dependent	B. Independent	
	C. Mutually exclusive	D. Not Known	
774)	In any normal distribution, the proportion of observations that are outside ± 1 standard deviation of the mean is closest to		B
	A. 0.05	B. 0.32	
	C. 0.68	D. 0.95	
775)	If $P(A \cap B)=\phi$ then $P(A \cup B)=$		B
	A. 0	B. $P(A)+P(B)-P(A B)$	
	C. $P(A)+P(B)$	D. None of these	
776)	When an event is certain to occur, its Probability is		B
	A. 0	B. 1	
	C. 0.5	D. None of these	
777)	In binomial probability distribution, the dependents of standard deviations must includes		D
	A. probability of q	B. probability of p	
	C. Number of trials	D. All of these	
778)	In binomial distribution, the formula of calculating standard deviation is		C
	A. square root of p	B. square root of pq	
	C. square root of npq	D. square root of $n p$	

